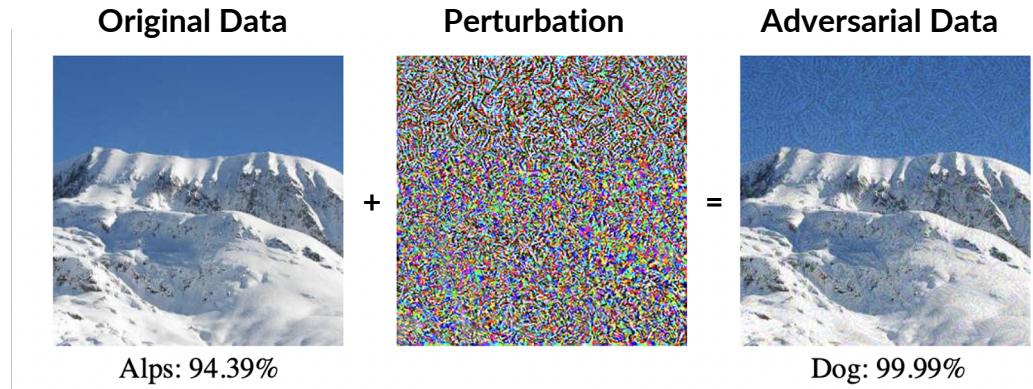

Adversarial Attack and Defense

Jaechul Roh (ID: 20473590)

YouTube Video Link: <https://youtu.be/maMC93Lf-mY>

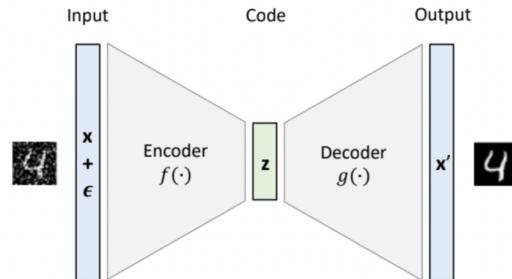
Introduction

- Adversarial Examples input data with an imperceptible change
- Adversarial Examples = Original data (x) + Perturbation with noise (ϵ)
- Adversarial Attack induce misclassification in purpose to make machine learning models more **ROBUST**

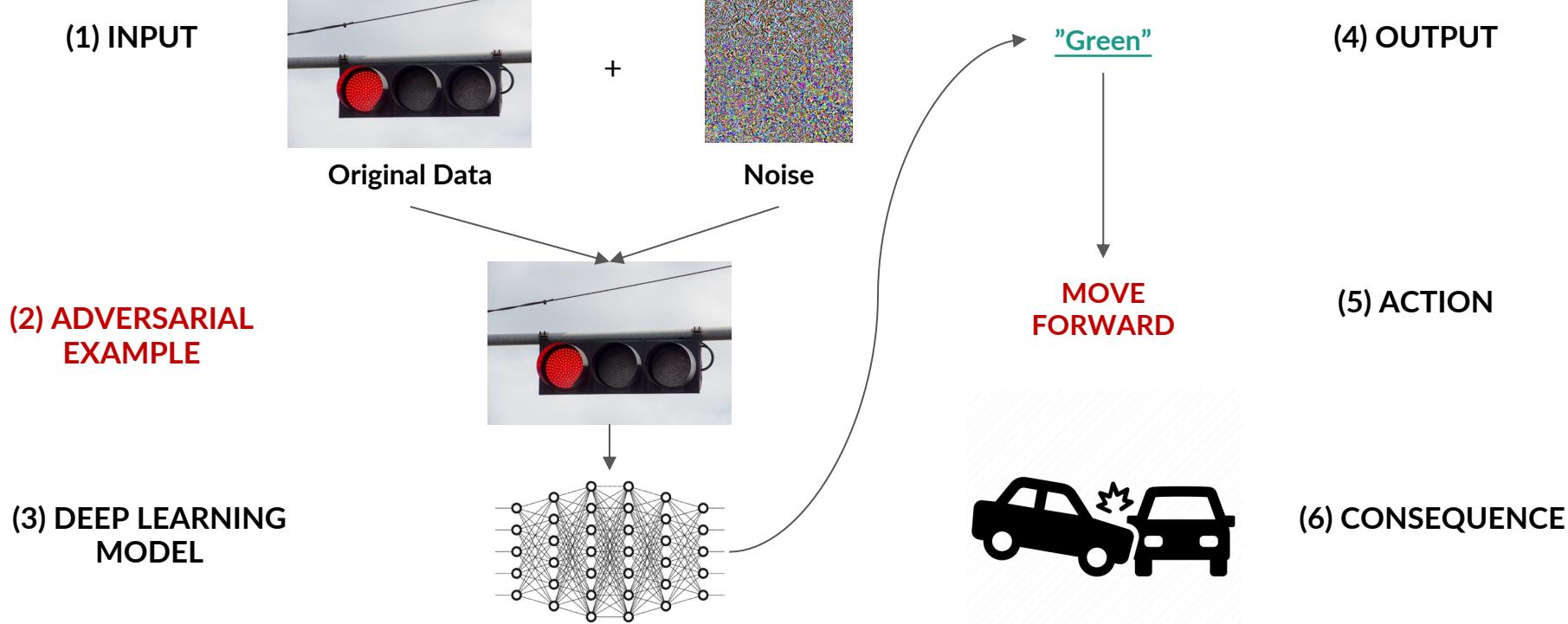


Course related material

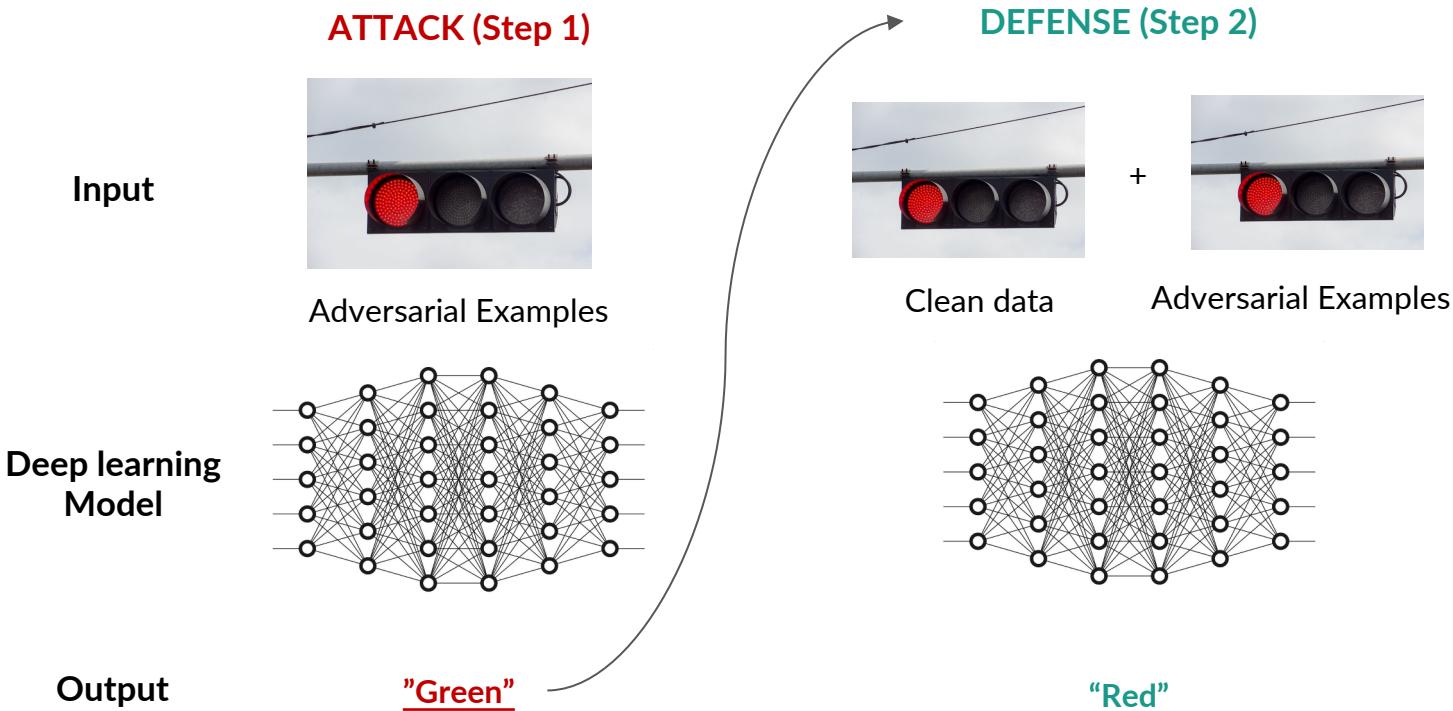
Stacked Denoising Autoencoder = The **NOISY INPUT** will be inputted to denoising autoencoder, which will learn how to recover the original input (x). Such method will help to create a **MORE ROBUST CODE**, so that the model will **NOT BE SENSITIVE TOWARDS NOISY INPUTS**.



Real-life adversarial attack example



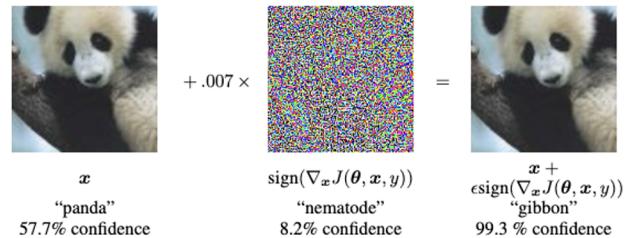
Adversarial Defense



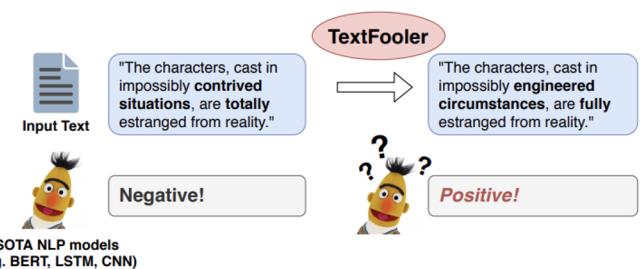
Representative models/algorithms

- *Explaining and Harnessing Adversarial Examples (2015)*
 - Ian.J.Goodfellow, Jonathon Shlens & Christian Szegedy
- *Is BERT Really Robust? A Strong Baseline for Natural Language Attack on Text Classification and Entailment*
 - Di Jin, Zhijing Jin, Joey Tianyi Zhou, Peter Szolovits

(Image Credit: (Goodfellow et al. 2014b))



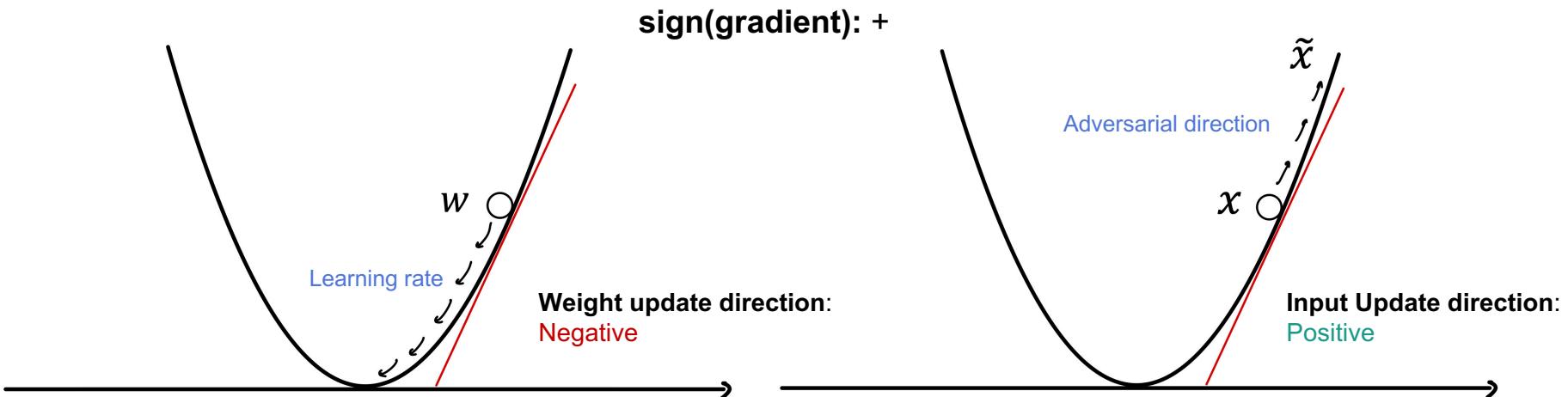
Classification Task: Is this a *positive* or *negative* review?



Explaining and Harnessing Adversarial Examples

Fast Gradient Sign Method (FGSM)

- Gradient Descent Method
OPPOSITE direction of the gradient of the cost function
- Fast Gradient Sign Method (FGSM)
SAME direction of the gradient of the cost function



How adversarial example is formed

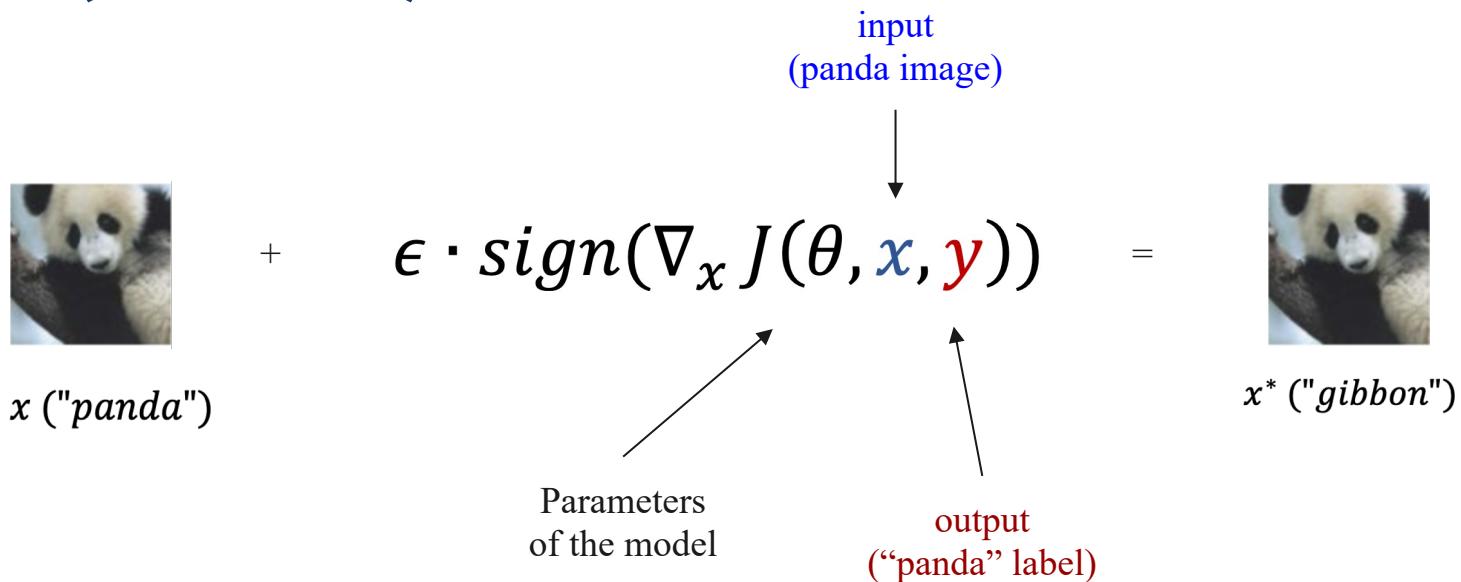
$$x + \epsilon \cdot \text{sign}(\nabla_x J(\theta, x, y))$$

Cost Function

Gradient

Adversarial Example

FGSM (Continued)



Mathematical Notation and Concepts

$$\begin{array}{ccc} \text{activation value} & \longrightarrow & \mathbf{w}^T \tilde{x} = \mathbf{w}^T x + \mathbf{w}^T \eta \\ \text{(with perturbation)} & & \uparrow \\ & & \text{original desired output} \end{array} \qquad \qquad \qquad \text{activation growth}$$

$$\text{perturbation} \longrightarrow \eta = \epsilon \cdot \text{sign}(\nabla_{x^*} J(\theta, x, y))$$

Deciding perturbation

FGSM uses the "max norm constraint":

(In all definitions, $x = (x_1, x_2, \dots, x_n)$)

$$L^\infty \text{ distance: } \|x\|_\infty = \max_{1 \leq i \leq n} |x_i|$$

L^∞ : moving as many pixels as possible but only by a small number

$$L^1 \text{ distance: } \|x\|_1 = \sum_{i=1}^n |x_i|$$

L^1 : summed absolute value difference between x and x^*

Example 1: 1-Dimensional Calculation

$$w^T \tilde{x} = w^T x + w^T \eta = w^T(x + \eta)$$

$$\begin{array}{c|c|c} x & w & w^T x \\ \hline \begin{pmatrix} 3 \\ -2 \\ 5 \end{pmatrix} & * \begin{pmatrix} 7 \\ 10 \\ 20 \end{pmatrix} & = \begin{pmatrix} 21 \\ -20 \\ 100 \end{pmatrix} \Rightarrow 101 \end{array}$$

activation value
(WITHOUT perturbation)

$$\begin{array}{c} \eta = \text{sign}(w) \\ \hline \text{sign} \begin{pmatrix} 7 \\ 10 \\ 20 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \end{array} \quad \begin{array}{c} x \quad \eta \\ \hline \begin{pmatrix} 3 \\ -2 \\ 5 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \end{array} \quad \begin{array}{c} w \\ \hline \begin{pmatrix} 7 \\ 10 \\ 20 \end{pmatrix} \end{array} \quad w^T \tilde{x} \\ \hline \begin{pmatrix} 28 \\ -10 \\ 120 \end{pmatrix} \Rightarrow 138 \quad \begin{array}{c} \text{activation value} \\ (\text{WITH perturbation}) \end{array} \end{array}$$

Example 2: 3-Dimensional Calculation

$$x + \epsilon \cdot \text{sign}(\nabla_x J(\theta, x, y))$$

$\text{sign}(w_x) \rightarrow \text{POSITIVE}$

$\text{sign}(w_y) \rightarrow \text{NEGATIVE} \times \epsilon_{vector} = -\epsilon + x_{vector}$

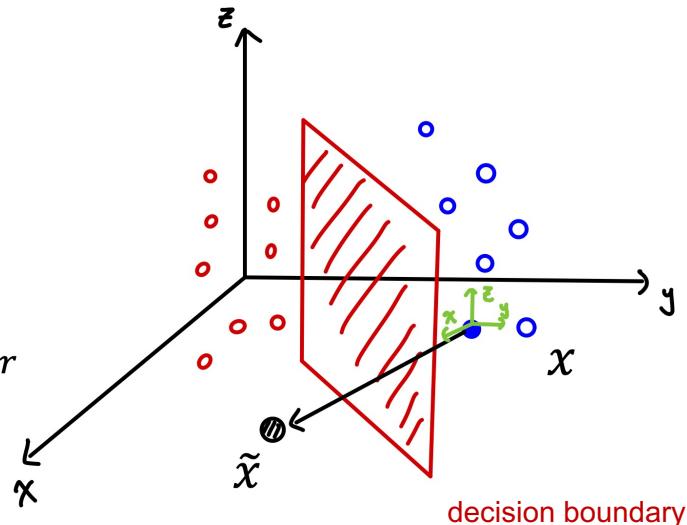
$\text{sign}(w_z) \rightarrow \text{POSITIVE}$

$+\epsilon$

$-\epsilon$

$+\epsilon$

$= x^*_{vector}$



Adversarial Defense (FGSM)

$$\tilde{J}(\theta, x, y) = \alpha \cdot J(\theta, x, y) + (1 - \alpha) \cdot J(\theta, \tilde{x}, y)$$

$\begin{matrix} (3) & (1) & (2) \end{matrix}$

α : **proportion** to use between the original data and the adversarial example

(1) $\tilde{J}(\theta, x, y)$: cost function of the original data

(2) $J(\theta, \tilde{x}, y)$: cost function of the **adversarial example**

(3) $J(\theta, x, y)$: cost function of both original data AND adversarial example

Adversarial Attack in Natural Language Processing

Hardship of natural language adversarial attack

Image domain (CONTINUOUS values)

Adding a minimal noise to the pixels is not noticeable through naked eyes

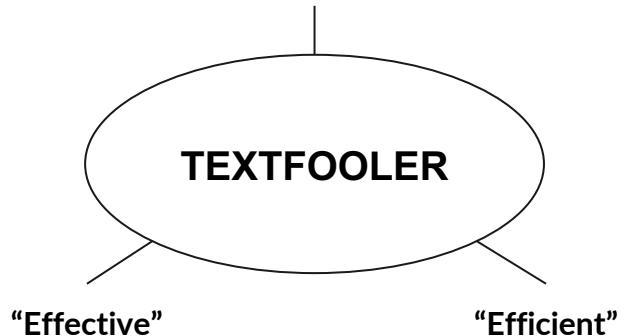
Text domain (DISCRETE values)

The difference between the original text and the adversarial example is easily recognizable

Introduction

- Proposing *TextFooler*

“Utility-preserving”

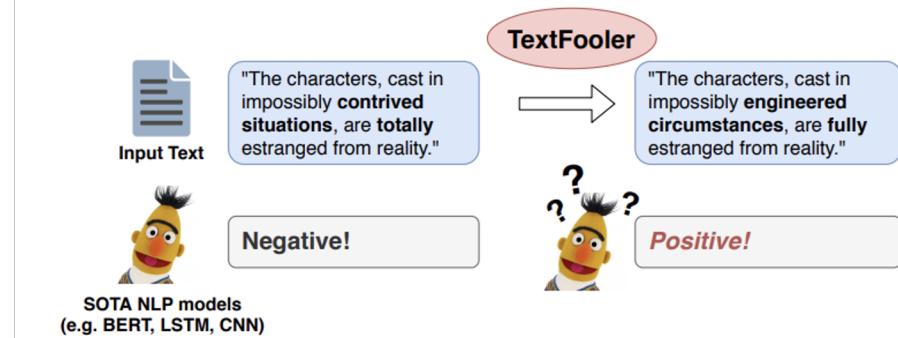


- How to test such the robustness?

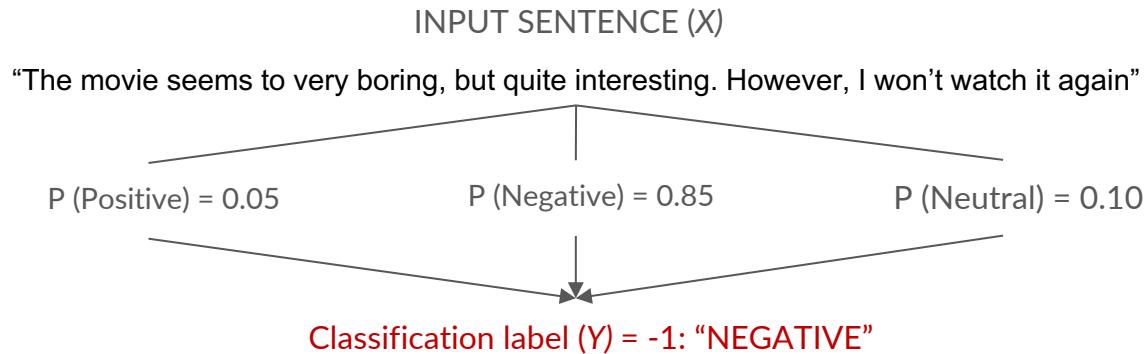
Models: 1. WordLSTM 2. WordCNN 3. BERT

Task: 5 classification tasks and 2 textual entailment tasks

Classification Task: Is this a *positive* or *negative* review?



Classification & Recognizing Text Entailment (NLP tasks)



HYPOTHESIS SENTENCE

Input: “It was a very touching movie”

Entailment

“The movie made me cry”

Contradiction

“The movie made me laugh”

Neutral

“There was no discount for the movie ticket”

Forming text adversarial example

- Text adversarial example need to meet the following **requirement**:

$$F(X_{\text{adv}}) \neq F(X), \text{ and } \text{Sim}(X_{\text{adv}}, X) \geq \epsilon,$$

Classification result
of adversarial text

Classification result
of original data

Semantic similarity
between X_{adv} and X

Minimum
similarity

TEXTFOOLER Attack Algorithm

Steps:

1. Word Importance Score
2. Word Transformer
 - a. Adversarial example candidates POS (Part of Speech) checking
 - b. Semantic Similarity Filter
 - c. Finalizing Adversarial Example

Algorithm 1 Adversarial Attack by TEXTFOOLER

Input: Sentence example $X = \{w_1, w_2, \dots, w_n\}$, the corresponding ground truth label Y , target model F , sentence similarity function $\text{Sim}(\cdot)$, sentence similarity threshold ϵ , word embeddings Emb over the vocabulary Vocab .

Output: Adversarial example X_{adv}

```
1: Initialization:  $X_{\text{adv}} \leftarrow X$ 
2: for each word  $w_i$  in  $X$  do
3:   Compute the importance score  $I_{w_i}$  via Eq. (2)
4: end for
5:
6: Create a set  $W$  of all words  $w_i \in X$  sorted by the descending order of their importance score  $I_{w_i}$ .
7: Filter out the stop words in  $W$ .
8: for each word  $w_j$  in  $W$  do
9:   Initiate the set of candidates  $\text{CANDIDATES}$  by extracting the top  $N$  synonyms using  $\text{CosSim}(\text{Emb}_{w_j}, \text{Emb}_{\text{word}})$  for each word in  $\text{Vocab}$ .
10:   $\text{CANDIDATES} \leftarrow \text{POSFilter}(\text{CANDIDATES})$ 
11:   $\text{FINCANDIDATES} \leftarrow \{\}$ 
12:  for  $c_k$  in  $\text{CANDIDATES}$  do
13:     $X' \leftarrow \text{Replace } w_j \text{ with } c_k \text{ in } X_{\text{adv}}$ 
14:    if  $\text{Sim}(X', X_{\text{adv}}) > \epsilon$  then
15:      Add  $c_k$  to the set  $\text{FINCANDIDATES}$ 
16:       $Y_k \leftarrow F(X')$ 
17:       $P_k \leftarrow F_{Y_k}(X')$ 
18:    end if
19:  end for
20:  if there exists  $c_k$  whose prediction result  $Y_k \neq Y$  then
21:    In  $\text{FINCANDIDATES}$ , only keep the candidates  $c_k$  whose prediction result  $Y_k \neq Y$ 
22:     $c^* \leftarrow \underset{c \in \text{FINCANDIDATES}}{\text{argmax}} \text{Sim}(X, X'_{w_j \rightarrow c})$ 
23:     $X_{\text{adv}} \leftarrow \text{Replace } w_j \text{ with } c^* \text{ in } X_{\text{adv}}$ 
24:  return  $X_{\text{adv}}$ 
25: else if  $P_{Y_k}(X_{\text{adv}}) > \min_{c_k \in \text{FINCANDIDATES}} P_k$  then
26:    $c^* \leftarrow \underset{c_k \in \text{FINCANDIDATES}}{\text{argmin}} P_k$ 
27:    $X_{\text{adv}} \leftarrow \text{Replace } w_j \text{ with } c^* \text{ in } X_{\text{adv}}$ 
28: end if
29: end for
30: return None
```

1. Word Importance Ranking

“Measuring the influence the word, $\underline{w_i}$ ”

$$I_{w_i} = \begin{cases} \underline{F_Y(X) - F_Y(X_{\setminus w_i})}, & \text{if } F(X) = F(\underline{X_{\setminus w_i}}) = Y \\ (\underline{F_Y(X) - F_Y(X_{\setminus w_i})}) + (\underline{F_{\bar{Y}}(X_{\setminus w_i})} - \underline{F_{\bar{Y}}(X)}), \\ & \text{if } F(X) = Y, F(\underline{X_{\setminus w_i}}) = \bar{Y}, \text{ and } Y \neq \bar{Y}. \end{cases}$$

Classification output Input without the word, $\underline{w_i}$
Two different labels

“Prediction change before, and after the word, $\underline{w_i}$ ”

a. Candidates and POS Checking

Output: Adversarial example X_{adv}

1: Initialization: $X_{\text{adv}} \leftarrow X$

2: **for** each word w_i in X **do**

3: (1) Compute the importance score I_{w_i} via Eq. (2)

4: **end for**

8: **for** each word w_j in W **do** (3)

9: Initiate the set of candidates CANDIDATES by extracting the top N synonyms using CosSim(Emb_{w_j}, Emb_{word}) for each word in Vocab. (2)

10: CANDIDATES \leftarrow POSFilter(CANDIDATES) (4)

(1): Process importance score for every word in the sentence example

(2): Cosine Similarity Score between the Embedding(deleting word) and Embedding(Vocab)

(3): Extract top N synonyms and append to CANDIDATES list

(4): Check POS (Part of Speech) for every candidate word and filter

b. Semantic Similarity Filter

(3) Cosine Similarity between X (original sentence) and X_{adv} (Adversarial Example)

```
11: FINCANDIDATES  $\leftarrow \{ \}$ 
12: for  $c_k$  in CANDIDATES do (2)
13:   (1)  $X' \leftarrow$  Replace  $w_j$  with  $c_k$  in  $X_{adv}$ 
14:   if  $Sim(X', X_{adv}) > \epsilon$  then (4)
15:     (3) Add  $c_k$  to the set FINCANDIDATES
16:      $Y_k \leftarrow F(X')$ 
17:      $P_k \leftarrow F_{Y_k}(X')$ 
18:   end if
19: end for
```

(1) Substitute that specific word in the sentence with each of the words in the CANDIDATES

(2) Such sentence becomes X_{adv} (Adversarial Example)

(4) Words with similarity score $> \epsilon$ (defined by the programmer) will be stored in FINCANDIDATES list

c. Finalizing the Adversarial Example

In the descending order of similarity scores, replace the word:

```
(1)
20: if there exists  $c_k$  whose prediction result  $Y_k \neq Y$  then
21:   In FINCANDIDATES, only keep the candidates  $c_k$  whose
22:   prediction result  $Y_k \neq Y$ 
23:    $c^* \leftarrow \operatorname{argmax}_{c \in \text{FINCANDIDATES}} \text{Sim}(X, X'_{w_j \rightarrow c})$ 
24:    $X_{\text{adv}} \leftarrow \text{Replace } w_j \text{ with } c^* \text{ in } X_{\text{adv}}$ 
25:   return  $X_{\text{adv}}$ 
26: else if  $P_{Y_k}(X_{\text{adv}}) > \min_{c_k \in \text{FINCANDIDATES}} P_k$  then
27:    $c^* \leftarrow \operatorname{argmin}_{c_k \in \text{FINCANDIDATES}} P_k$ 
28:    $X_{\text{adv}} \leftarrow \text{Replace } w_j \text{ with } c^* \text{ in } X_{\text{adv}}$ 
29: end if
30: end for
31: return None (2)
```

(1) IF the prediction of the target model changes:

- Within those candidates that changed the output of the target model
- Select the word that had the highest similarity score between X and X_{adv} .

(2) ELSE IF choose the word with the least confidence level
(word that is most likely to change the prediction of the model)

- Prediction changed → Attack Success!

Run through this process in the descending order of importance score of each word.

Summary

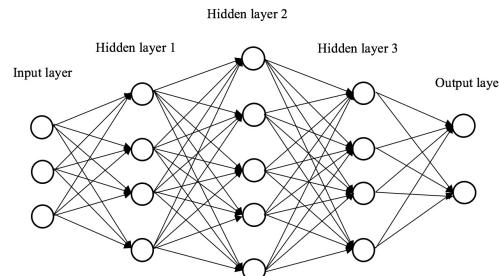
Adversarial **ATTACK**

x^* ("gibbon")

Adversarial **TRAINING**

ROBUST
deep learning model

x ("panda")



Reference

- Attack & Defense (1): Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing adversarial examples." *arXiv preprint arXiv:1412.6572* (2014).
- Attack & Defense (2): Jin, Di, et al. "Is bert really robust? a strong baseline for natural language attack on text classification and entailment." *Proceedings of the AAAI conference on artificial intelligence*. Vol. 34. No. 05. 2020.
- Kariya, Mahendra. "Paper Discussion: Explaining and Harnessing Adversarial Examples." *Medium*, Medium, 16 Nov. 2018, <https://medium.com/@mahendrakariya/paper-discussion-explaining-and-harnessing-adversarial-examples-908a1b7123b5>.
- Dong, Yinpeng, et al. "Boosting adversarial attacks with momentum." *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2018.
- **1-dimensional example:** "Explaining And Harnessing Adversarial Examples 논문-리뷰." *Explaining And Harnessing Adversarial Examples 논문-리뷰*, 10 July 2020, velog.io/@miai0112/Explaining-And-Harnessing-Adversarial-Examples-%EB%85%BC%EB%AC%B8-%EB%A6%AC%EB%B7%BO.
- "[텍스트 분류 모델 공격 기법] TextFooler: Is BERT Really Robust?" YouTube, 22 Nov. 2020, www.youtube.com/watch?v=EF-IYFTKZiE&t=992s.
- Pan, Zhixin, and Prabhat Mishra. "Fast Approximate Spectral Normalization for Robust Deep Neural Networks." *arXiv preprint arXiv:2103.13815* (2021).
- Cho, Yoon Sang. "Adversarial Attacks and Defenses in Deep Learing." *Adversarial Attacks and Defenses in Deep Learing*, 2020, pp. 5–32, dmqm.korea.ac.kr/activity/seminar/289.

Thank you!

Jaechul Roh (ID: 20473590)